3z^2-4=140

Simple and best practice solution for 3z^2-4=140 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3z^2-4=140 equation:



3z^2-4=140
We move all terms to the left:
3z^2-4-(140)=0
We add all the numbers together, and all the variables
3z^2-144=0
a = 3; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·3·(-144)
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{3}}{2*3}=\frac{0-24\sqrt{3}}{6} =-\frac{24\sqrt{3}}{6} =-4\sqrt{3} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{3}}{2*3}=\frac{0+24\sqrt{3}}{6} =\frac{24\sqrt{3}}{6} =4\sqrt{3} $

See similar equations:

| 2x+81=65 | | 4(x-4)/2=2(x+3)/8 | | -2p+4p=-2 | | 4j+2=42 | | 16x^2−52x+30=0 | | 9/x=21 | | 16x2−52x+30=0 | | 3-7b-6b=3 | | 4s+20=160 | | 23=3+u/4 | | 4m-4=5m-5 | | 8x/7-5=43 | | (2x-14)=16 | | 7x-13=4x-32 | | 2(3x+5)=49+5 | | 35(15d+20)-16(18d-12)=38 | | 0.50+0.20y=4.05 | | 5x/2-x=×/10-14/5 | | (x+3)(x–3)=8x | | 2w+10-8w=-8 | | 1+3(a-5)+a=14 | | 7w+10=8w | | 15-9x=48 | | 7y+6=y+18 | | -1/4t=-3 | | 4y-y+11=38. | | -2(3x+1)=-6x-2 | | (6v-5)(v-4)=0 | | 4x-8=2x-9 | | -5=3x-6x-4(3) | | 3(x-4)+2(x-2)=6(x-1) | | 6x+14x-9=5(4x+6) |

Equations solver categories